
How to monitor 12V battery charge with a

Raspberry Pi Pico

raspberrypi

pico

diy

30 minutes

Jan 05 2024

Last year I built a 12V powerbank to power my astrophotography rig and to light my shed. It has

been working great so far, in fact I liked it so much I built a second one. While I’ve been very

happy with my DIY powerbanks in general, they lack one functionality, and that is remote

monitoring of the battery charge level. It would be awesome if I could check the battery voltage

remotely, while the rig is working out there in the cold night. This need inspired me to look for

battery monitoring solutions, but from the ones I found, none were interesting, and after all, it’s

much more fun to build something by yourself, rather than take something off the shelf.

I have a Raspberry Pi Pico W, which I already used for other projects, such as making a weather

station and I decided I want to do something based on it. When browsing the internet, I came

across this forum thread showing how to measure voltage with the Pico.

Theoretical background

The Raspberry Pi Pico has 3 ADC (Analogue to Digital Converter) inputs. Analogue in this case

meaning it can measure voltage as a continuous spectrum, in contrast to the digital pins, which

only work in binary, 0 and 1, voltage and no voltage. In this project I am using one of those

inputs to measure the voltage of the battery. Now, the problem is that, it can only accept voltages

up to 3.3V. If I wanted to measure, let’s say, the voltage of a 1.2V AA battery that would be fine,

but I want to monitor a 12V battery, which voltage can range from 13.5V at full charge, to 11V

at depletion. That’s why we need to use a tool from the basics of electronics: a voltage divider.

A voltage divider is a circuit which consists of two resistors connected in series. The voltage

measured between the point between the resistors (Vout) and the negative battery terminal will

be lower than the voltage of the battery itself (Vin). The voltage drop is constant and based on

the values of the resistors, so by measuring the lowered voltage and knowing the conversion rate,

we can calculate the voltage of the battery. Looking at the diagram should give you a better

understanding of the whole idea.

https://stfn.pl/blog/tag/raspberrypi
https://stfn.pl/blog/tag/pico
https://stfn.pl/blog/tag/diy
https://stfn.pl/blog/12-off-grid-powerbank/
https://stfn.pl/blog/04-pico-weather-station2/
https://stfn.pl/blog/04-pico-weather-station2/
https://stfn.pl/blog/04-pico-weather-station2/
https://forums.raspberrypi.com/viewtopic.php?t=336885

Image taken from Wikipedia commons.wikimedia.org/w/index.php?curid=36347358

Hardware

To build this battery voltage measuring device, we will need:

 A microcomputer or a microcontroller with GPIOs, with at least one analogue GPIO. I

am using a Raspberry Pi Pico, because this is what I already have around.

 a prototype board

 two resistors

 cables

 the usual tools: a soldering iron, cable crimpers and strippers

 optionally: a buck converter to power the Pico from the 12V battery, but that won’t be

needed if you want to power the Pico from an external power source. I bought a variable

step-down converter based on a LM2596 chip.

Choosing the resistors

We will need the voltage divider to reduce the incoming battery voltage (13.5V - 11V) to a value

acceptable by the Pi Pico, which is below 3.3V.

Below is the formula to calculate the voltage drop. There is also a handy online calculator

available.

After doing some trial and error calculations I went with a 75 kOhm and a 20 kOhm resistor.

This way even at the maximum cell voltage of ~13.5V, the voltage coming to the Pico will be

https://commons.wikimedia.org/w/index.php?curid=36347358
https://botland.store/converters-step-down/2967-step-down-voltage-inverter-lm2596-32v-35v-3a-5903351241397.html
https://botland.store/converters-step-down/2967-step-down-voltage-inverter-lm2596-32v-35v-3a-5903351241397.html
https://botland.store/converters-step-down/2967-step-down-voltage-inverter-lm2596-32v-35v-3a-5903351241397.html
https://ohmslawcalculator.com/voltage-divider-calculator
https://d233f3e99deg9m.cloudfront.net/blog/22/Resistive_divider.png
https://d233f3e99deg9m.cloudfront.net/blog/22/voltage_divider2.png

around 3V. The resistors are in the kiloohm range to reduce the amount of current flowing

through the Pi.

Connecting stuff

Diagram made with Circuit-Diagram

The circuit is very simple. The branch starts with the positive connector of the battery, goes

through both resistors and returns to the negative connector. From a point between the resistors,

another branch connects to one of the analogue pins on the Pi. I went with Pin 28, as it’s the

nearest one to the AGND (Analogue Ground Pin). A final branch goes from the AGND to the

negative connector on the battery. And we’re done.

I used a prototype board to connect all of the components. First I went with soldering the

resistors to the prototype board. Remember or mark which resistor is the higher value one and

which is the lower value. I left one hole of space between the resistors for a cable going to the

Pico.

The next step is to solder the cables going from the battery to the resistors. If you are going to

use a plug to connect the device to a battery as I am, it’s a good time to solder it now. Pay

attention to the polarity of the plug, the positive cable needs to be connected to the resistor with

the higher value.

https://www.circuit-diagram.org/editor/
https://d233f3e99deg9m.cloudfront.net/blog/22/circuit.png

Now solder to the resistors the two cables going from the board to the Pico. Don’t solder cables

to the Pico itself yet! Once you have the resistors and the cables soldered, this is a good point to

test that the voltage divider actually works. Connect the two battery cables to a battery and with a

multimeter, measure the voltage between the the cables that will be connected to the Pico. If the

battery is close to full charge, the measured voltage should be around 3V. If that is the case, cool,

we’re home. If not, something went very wrong with the circuit, check all the connections again.

Now connect the board-to-Pico cables to the analogue input, and the analogue ground of the Pi.

The soldering part is done. Take a double look at your work and make sure everything is

connected properly. With the Pico UNPLUGGED from the computer, connect the battery cables

to the battery socket. Wait a few minutes. Nothing should get hot, nothing should emit smoke. If

everything looks fine, it’s time to connect the Pico the a computer and start working on the

software side.

Software

I am assuming you know how to access the Pi Pico in a code editor and you are using

MicroPython. I am using Thonny to write and run code on the Pi.

https://d233f3e99deg9m.cloudfront.net/blog/22/cables3.jpg
https://d233f3e99deg9m.cloudfront.net/blog/22/soldered.jpg

Reading the voltage

Let’s start with something very simple, just measuring the voltage and printing it out.

from machine import Pin, ADC

from time import sleep

analogue_input = ADC(28)

VOLTAGE_DROP_FACTOR = 4.572

while True:

 sensor_value = analogue_input.read_u16()

 voltage = sensor_value * (3.3 / 65535) * VOLTAGE_DROP_FACTOR

 print(voltage)

 sleep(30)

Most of the code should be obvious. Wer are importing the needed modules, measuring the

voltage in a loop, and printing the measured value. But let’s talk about this line.

voltage = sensor_value * (3.3 / 65535) * VOLTAGE_DROP_FACTOR

This is how the voltage on the Pico should be measured. The actual value returned by measuring

the analogue input is a number between 0 and 65535, with the max value meaning 3.3V and 0

meaning 0V. By multiplying that value by 3.3 we are getting the voltage coming through the

analogue pin. However, we are not exactly interested in the voltage at the Pi pin, we want to

know the voltage of the battery. We are using a voltage divider that drops the battery voltage,

right? Therefore, we need to multiply the Pi voltage by the voltage divider factor. Here I went

with the simplest approach. I measured at the same time the voltage reported by the pi, and,

using a multimeter, the battery voltage and calculated the difference factor. For me it is 4.572,

but as every resistor differs a tiny bit, it will be different for everyone else. You will need to

measure and calculate your own drop factor.

The part below is totally optional, feel free to skip it.

When testing if the whole device actually works, I let it run for a few hours and saved the

measured values to a file, and plotted it in a Jupyter Notebook using matplotlib.

Here is the code used to generate the plot:

voltages is a file with each value on its own line. The raw values from the file are plotted in

blue, and as you can see the data is noisy, so I used a smoothing filter for the red line. I found

how to do it here on stackoverflow

import matplotlib.pyplot as plt

import numpy as np

from math import factorial

from scipy.signal import savgol_filter

with open("voltages") as f:

 lines = f.readlines()

lines = [float(line.strip()) for line in lines]

lines = np.array(lines)

x = np.array([x for x in range(len(lines))])

smooth_lines = savgol_filter(lines, 51, 3)

plt.plot(x, lines)

plt.plot(x, smooth_lines,color='red')

plt.ylabel('voltage')

plt.xlabel('data points')

plt.axis([0, len(lines), 11.8, 12.4])

plt.savefig('voltage.png')

plt.show()

Adding internet connectivity

Once we are able to read the voltage, it would be good to send it somewhere, wouldn’t it? And

for that I am using the power of the Internet.

First we need to connect the Pi to a WiFi network. Here’s the code to do it. Save it on the Pico in

a file called boot.py, and this way the script will be run every time the Pico is powered on. This

is exactly the same code I used in the Pico Weather Station post. I believe the code is self-

explanatory, but is something is unclear, refer to that previous post, I explain it there in detail.

https://stackoverflow.com/questions/20618804/how-to-smooth-a-curve-for-a-dataset
https://stfn.pl/blog/04-pico-weather-station2/
https://d233f3e99deg9m.cloudfront.net/blog/22/voltage_plot.png

import time

import network

import machine

led = machine.Pin("LED", machine.Pin.OUT)

ssid = "NETWORK-NAME"

password = "PASSWORD"

wlan = network.WLAN(network.STA_IF)

wlan.active(True)

wlan.connect(ssid, password)

max_wait = 10

while max_wait > 0:

 led.on()

 time.sleep(0.1)

 led.off()

 if wlan.isconnected():

 break

 max_wait -= 1

 time.sleep(1)

if not wlan.isconnected():

 for _ in range(5):

 led.on()

 time.sleep(0.1)

 led.off()

 time.sleep(0.1)

 led.on()

 time.sleep(0.1)

 led.off()

 time.sleep(0.7)

 time.sleep(1)

 machine.reset()

else:

 status = wlan.ifconfig()

 led.on()

 time.sleep(3)

 led.off()

Pico web server

Next we need to make the voltage information available. The simpler way is to make a web

server out of the Pico. I took the code below from a guide on the Raspberry Pi webpage and

modified it a bit to accommodate to my needs.

In short, the Pi will be listening for any incoming connections, and once a client talks to the Pi, it

will measure the voltage and return it in a JSON format. If you prefer HTML rather than JSON,

check the guide linked above for an example.

One issue with using the Pi as a webserver is that you will need to know it’s IP address to

connect to it. To find the IP address you can use nmap under Linux, or an iOS/Android wifi

scanner application.

https://www.raspberrypi.com/news/how-to-run-a-webserver-on-raspberry-pi-pico-w/

Save the file below as main.py. boot and main are special names for files on the Pico. Every

time the Pico is powered on, first the boot file is run, and then the main one. This happens even

when the Pico is not connected to a computer.

import json

import network

import socket

import time

VOLTAGE_DROP_FACTOR = 4.572

analogue_input = machine.ADC(28)

addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]

s = socket.socket()

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind(addr)

s.listen(1)

while True:

 try:

 cl, addr = s.accept()

 sensor_value = analogue_input.read_u16()

 voltage = sensor_value * (3.3 / 65535) * VOLTAGE_DROP_FACTOR

 response = {

 "voltage": voltage,

 }

 cl.send('HTTP/1.0 200 OK\r\nContent-type: application/json\r\n\r\n')

 cl.send(json.dumps(response))

 cl.close()

 except OSError as e:

 cl.close()

Sending data with MQTT

And here is the MQTT version. I prefer using MQTT over HTTP as I can pipe MQTT messages

into my InfluxDB/Grafana monitoring pipeline and put the data into a nice graph.

To use MQTT you will need to install the umqtt library on the Pico, Thonny support installing

additional packages using the “Tools -> Manage packages” menu.

What is also the upside of using MQTT is that we do not need to know the IP of the Pico, here

the Pi needs to know the IP address of the MQTT broker, which is usually static or just more

stable than the IP address of the Pico.

The main.py file for using MQTT:

import json

import time

import machine

from umqtt.simple import MQTTClient

led = machine.Pin("LED", machine.Pin.OUT)

analogue_input = machine.ADC(28)

VOLTAGE_DROP_FACTOR = 4.572

while True:

 sensor_value = analogue_input.read_u16()

 voltage = sensor_value * (3.3 / 65535) * VOLTAGE_DROP_FACTOR

 payload = {

 "voltage": voltage,

 }

 qt = MQTTClient("umqtt_client", "<MQTT BROKER IP>", keepalive=3600)

 qt.connect()

 qt.publish(b"battery", json.dumps(payload))

 qt.disconnect()

 led.on()

 time.sleep(0.5)

 led.off()

 time.sleep(30)

The code is very similar to the one shown in the Pico Weather Station post.

The main difference here is that with MQTT we are pushing the data in set intervals to an MQTT

broker, a server that handles the incoming messages and allow other clients, such as InfluxDB, to

read them and use them to for example create a graph. battery is the name of the topic, in

MQTT topics are a way to separate different types of messages from each other. This part of the

code sets up an MQTT client instance, connects and sends the payload.

qt = MQTTClient("umqtt_client", "<MQTT BROKER IP>", keepalive=3600)

qt.connect()

qt.publish(b"battery", json.dumps(payload))

qt.disconnect()

This is not the place to dive into MQTT specifics, if you want to start using this protocol, start

with checking out Mosquitto, a popular MQTT broker.

Base done

The base is now done, we have a working battery monitoring device that can send the battery

status over the network. When connected to a battery, and powered via USB from a powerbank

or a wall charger, it will connect to the internet and provide information on the voltage level of a

12V battery.

Now let’s tackle the issue that is is being powered from a power source that is external to the

12V battery. This can be seen as either a feature or a flaw of the design. A feature because this

https://stfn.pl/blog/04-pico-weather-station2/
https://mosquitto.org/

way it won’t drain the main battery, and will run even if the main battery is temporarily turned

off. A flaw because it adds a second battery that needs to be charged, and together with that

additional cabling and complication in general.

Changing the power source

In this section let’s talk about modifying the device so that it does not require an additional

power source to run.

The Pi Pico can be powered from a 5V power source, either via the USB port or the VSYS and

GND pins. In my previous project I went with powering it with the pins, and this is also what I

am doing here.

I ordered a buck converter that can take a higher input voltage and output a stable 5V. The on I

bought is a variable output converter based on the LM2596 chip. Before using with the Pi, it

needs to be configured. There is a tiny potentiometer on the board, and by turning it you can set

the output voltage. I connected the buck converter to a 12V battery and checked the output

voltage with a multimeter. I turned the potentiometer until the output was exactly 5V. Now the

thing that was left, was to connect the converter output to the VSYS and GND pins on the Pi. As

always, follow the polarity.

And done, now there is only one plug coming out of the box. When the device is plugged into a

12V power source, it will automatically power up and start transmitting battery levels.

The finished project

https://d233f3e99deg9m.cloudfront.net/blog/22/circuit_with_buck_converter.png

Final words

I still need to tweak some things, when I finished the soldering I realized the cables are a bit

short. I also need to weather-proof the box. I’m also thinking of adding a thermometer to monitor

the battery temperature, but that is something for another project and another blog post.

This has been the longest and most complex blog post so far. I hope you enjoyed it and will build

your own device! As always, I would love to hear feedback from you. If you have thoughts on

what I wrote, please let me know either via email, or by talking to me on Mastodon. Links are in

the footer. Thank you so much for reading!

And finally, you can help with funding my future projects by supporting me on these

crowdfunding sites:

https://d233f3e99deg9m.cloudfront.net/blog/22/soldered_final.jpg

